The Hybrid Hypothesis
A new theory of human origins

Image
© Unknown
Chimpanzee
This article is a little different from others on this site, because it's about the findings of my own research. I'm a geneticist whose work focuses on hybrids and, particularly, the role of hybridization in the evolutionary process. Here, I report certain facts, which seem to indicate that human origins can be traced to hybridization, specifically to hybridization involving the chimpanzee (but not the kind of hybridization you might suppose!). You can access detailed and documented discussions supporting this claim from links on this page. But I'll summarize the basic reasoning here, without a lot of citations and footnotes. (If you would like to read an even briefer summary, click here; read about some objections to the theory here; also, a recent news story)

Rationale

So why do I think humans are hybrids? Well, first of all, I've had a different experience from most people. I've spent most of my life (the last thirty years) studying hybrids, particularly avian and mammalian hybrids. I've read thousands, really tens of thousands, of reports describing them. And this experience has dispelled some mistaken ideas I once had about hybrids, notions that I think many other people continue to take for granted.

For example, one widespread, but erroneous, belief is that all hybrids are sterile. This idea keeps a lot of people from even considering the possibility that humans might be of hybrid origin. This assertion is absolutely false - though I have in fact heard lots of people make it. For instance, in reviewing the reports I collected for my book on hybridization in birds (Handbook of Avian Hybrids of the World, Oxford University Press, 2006), which documents some 4,000 different kinds of hybrid crosses among birds, I found that those crosses producing partially fertile hybrids are about eight times as common as crosses known to produce sterile ones. The usual result is a reduction in fertility, not absolute sterility. My current work documenting hybridization among mammals shows that partially fertile natural hybrids are common, too, in Class Mammalia. And yet, it seems most people base their ideas of hybrids on the common mule (horse x ass), which is an exceptionally sterile hybrid, and not at all representative of hybrids as a whole.

I should, perhaps, also mention that differences in parental chromosome counts, even rather large ones, do not preclude the production of
fertile hybrids. While differences of this sort do bode ill for the fertility of the resulting progeny, it is only a rule of thumb. For example, female geeps, the products of hybridization between sheep (2n=54) and goats (2n=60), can produce offspring in backcrosses. Likewise, female zeedonks (Burchell's Zebra, 2n=44 x Ass, 2n=62) have also been fertile in backcrosses. There are many other examples of this sort among mammalian hybrids. Therefore, such differences between the parents in a cross do not in any way guarantee an absolute sterility in the hybrid offspring. (For those readers who do not know, backcross hybrids are produced when hybrids from a first cross mate with either of the two types of parents that produced them. When the resulting progeny mate again with the same parental type, the result is the second backcross generation, and so forth.)

A second so-called fact, which might make it seem impossible for humans to have had a hybrid origin, is the equally erroneous notion that hybrids, especially successful hybrids, do not occur in a state of nature. A third is the mistaken idea that only plants hybridize, and never animals. In fact, however, natural, viable, fertile animal hybrids are abundant. A wide variety of such hybrids occur on an ongoing basis (read a detailed discussion documenting these facts). For example, of the 5,000 different types of hybrid crosses listed in my book on hybridization in birds, approximately half are known to occur in a natural setting (download a PowerPoint presentation summarizing data on hybridization in birds). My current research indicates a comparable rate for mammals.

As the reader might imagine, if the assumption is correct that one of our parents is the chimpanzee, then it should be possible actually to identify the other parent as well. A hybrid combines traits otherwise seen only separately in the two parental forms from which it is derived, and it is typically intermediate to those parents with respect to a wide range of characters. Naturalists routinely use these facts to identify the parents of hybrids of unknown origin, even backcross hybrids.

First they posit a particular type of organism as similar to the putative hybrid (in the present case, this organism is the chimpanzee). They then list traits distinguishing the hybrid from the hypothesized parent, and this list of distinguishing traits will describe the second parent. A detailed analysis of such a triad will often establish the parentage of the hybrid. The traits in question in such studies are generally anatomical, not genetic. DNA evidence is used in only a very small percentage of such identifications (and even then, rarely in efforts to identify backcross hybrids), and yet firm conclusions can generally be reached.

So in the specific case of humans, if the two assumptions made thus far are correct (i.e., (1) that humans actually are hybrids, and (2) that the chimpanzee actually is one of our two parents), then a list of traits distinguishing human beings from chimpanzees should describe the other parent involved in the cross. And by applying this sort of methodology, I have in fact succeeded in narrowing things down to a particular candidate. That is, I looked up every human distinction that I could find and, so long as it was cited by an expert (physical anthropologist, anatomist, etc), I put it on a list. And that list, which includes many, many traits (see the lengthy table on the right-hand side of the next page), consistently describes a particular animal. Keep reading and I'll explain.



Comment: To learn more about the author and a great deal more on this interesting theory, please visit Macroevolution.net.