neurons dendrites brain
© The Center for Sleep and Consciousness, University of Wisconsin-Madison School of Medicine/ NIH Image GalleryUnexpected activity by dendrites could make single brain cells more computationally powerful than suspected
Scientists have discovered a new form of brain activity related to how cells process information. The incredible find suggests our brains might be even more powerful than previously thought, according to the team.

The new research, conducted by German and Greek scientists and published in Science, centers on signals sent and received by the ends of neurons, known as 'dendrites.' The information passed by these parts of the brain is key to how the organ decides subsequent actions.

pyramidal neuron
Pyramidal neuron
Working with slices of human brain tissue, the team found unexpectedly complex electrical activity in the dendrites of human pyramidal neurons. Modeling this activity then showed that single neurons were capable of solving computational problems which were thought to need a lot more brain power.

"The dendrites are central to understanding the brain because they are at the core of what determines the computational power of single neurons,"said study co-author Matthew Larkum, a neuroscientist at Humboldt University of Berlin. "There was a 'eureka' moment when we saw the dendritic action potentials for the first time."

Little is currently known about how dendrites operate in other species, or if this kind of high-computational activity is uniquely human. However, it's incredibly difficult to record dendrite activity in humans or animals while they're alive, and Larkum says more research is needed to fill in these blanks.