Science & Technology
Map


Question

Russian scientists suggest Siberian exploding holes 'are the key to Bermuda Triangle'

agujero yamal
© Elnuevodia.com
'The main element - and this is our working theory to explain the Yamal crater - was a release of gas hydrates'

Same phenomenon of discharge of gas hydrates 'led to crater formation in Russia and disappearance of ships in Atlantic'.


The craters - two in Yamal and one on the Taymyr peninsula - were revealed during the summer, leading to urgent analysis by scientists as well as a wave of speculation suggesting the cause was aliens from outer space, meteorites, or stray missiles.

Now respected Science in Siberia journal has come up with a coherent explanation for the northern craters and - sensationally - links it to the notorious Bermuda Triangle phenomenon, where ships and aircraft have disappeared under strange circumstances between Bermuda, Florida and Puerto Rico.

Heating from above the surface due to unusually warm climatic conditions, and from below, due to geological fault lines, led to a huge release of gas hydrates, say the scientists from the Trofimuk Institute of Petroleum-Gas Geology and Geophysics in Novosibirsk.

They subjected one of the two known craters in Yamal - a peninsula known to locals as 'the end of the world' - to detailed scrutiny.

'The main element - and this is our working theory to explain the Yamal crater - was a release of gas hydrates. It turned out that there are gas hydrates both in the deep layer which on peninsula is several hundred meters down, and on the layer close to the surface,' said scientist Vladimir Potapov.

Gas - notably methane - is trapped in the frozen hydrates under the permafrost and beneath some oceans.

'There might be another factor, or factors, that could have provoked the air clap. Each of the factors added up and gas exploded, leading to appearance of the crater. 'The crater is located on the intersection of two tectonic faults. Yamal peninsula is seismically quiet, yet the area of the crater we looked into has quite an active tectonic life', Potapov said.

Crucially, the surface ice and upper layers of permafrost were exposed to 'a much warmer summer than usual', as Tyumen scientist Marina Leibman earlier noted. Igor Yeltsov, the Trofimuk Institute's deputy head, stressed: 'There is a theory that the Bermuda Triangle is caused by gas hydrates.'

He explained: 'They start to actively decompose with methane ice turning into gas. It happens in an avalanche-like way, like a nuclear reaction, producing huge amounts of gas. That makes the ocean heat up, and ships sink in waters which are infused with huge amounts of gas. This leads to the air becoming supersaturated with methane, creating an extremely turbulent atmosphere, leading to aircraft crashes'.

Comment:

Irrespective of any possible role in the 'Bermuda Triangle' phenomena, increasing releases of methane gas are already having a devastating effect on our planet - as 'Earth opens up':

See: Creatures from the deep signal major Earth Changes: Is anyone paying attention?

Hundreds of methane plumes erupting along U.S. Atlantic coast

Casualties of seafloor methane gas release? Hundreds of thousands more fish found dead in Plymouth tidal pool, UK

See also: Earth is opening up: Mysterious Siberian crater attributed to methane

For an explosion you need two things: an igniter and combustible material. The Arctic, as with many other places on Earth is outgassing methane at never-before-seen rates. Lightning discharge events are also increasing in intensity and frequency because the solar wind is being grounded while comet dust loading of the atmosphere increases nucleation and resistance, leading to greater precipitation and greater charge-rebalancing respectively.

Then, consider the following excerpt from Superluminal Communications dated 26 of July, 2014:
Q: (Data) I would like to ask about this hole that opened up in Siberia that makes like a sinkhole that also has ejected material around. What caused this hole?

A: Gases exploding within the earth. We told you that an infinitesimal slowing of the earth rotation would cause things to "open up". Expect more of that in future as well. You did not ask what sparked the "explosion"? We can tell you to once again think of greater current flow.

Q: (L) So an electrically sparked inner earth explosion. That's creepy!

(Pierre) Earth opening up, gas released, and more electric current discharged.

(Perceval) I wonder could that be caused by a lightning strike, for example?

A: Yes.

Q: (L) So a lightning strike could strike the earth, and if the gas was within a...

(Pierre) These crazy fires everywhere... Gas, lightning, fireball, boom boom.

(Kniall) Did something like this happen in Harlem? There was a gas explosion in a building, and then the appearance of a sinkhole. It could have been the same kind of thing.

(L) Remember some time ago we asked about all the fires, and they talked about electrical sparking or something then? Even back then. It's not all necessarily fireballs.

(Perceval) They said that all those fires in like frozen land with scrub and bogs was gas.

(L) It's freakin' gas being released, and sparks.
These 'crater- holes' are not an indication of global warming. They're another indication of the planet opening up.

See Earth Changes and the Human Cosmic Connection: The Secret History of the World - Book 3 where this is explained in greater detail.

Cloud Lightning

From space, lightning over Kansas looks like creepy white blobs

Standing on the ground, we're used to seeing the bolts and flashes of lightning during epic thunderstorms. But how would it look like from space? These three Vine videos from orbiting NASA astronaut Reid Wiseman provide a glimpse.

As you can see in these videos he uploaded to his Twitter account a few days ago, flashes and pools of light appear in this lightning storm over Kansas that he spotted from the International Space Station. Check out more below the jump.
Solar Flares

Astronomers catch monster sunspot that turns towards Earth

© NASA/SDO
The sun on Oct. 23 as seen by NASA's Solar Dynamics Observatory. The dark sunspot cluster in AR2192 is obvious in the HMI Intensitygram (left), which represents the sun's photosphere -- known, colloquially, as the solar 'surface' -- whereas the EUV images to the right (at wavelengths 171A -- top -- and 304A) show emissions from the multimillion degree solar corona (where coronal loops shine bright) and chromosphere
Just as the US prepares to watch the partial solar eclipse today, nearly 100 million miles away on the sun a possible solar storm is brewing.

Amateur astronomers have been wowed by a vast sunspot that has rotated to face Earth, the largest since this solar cycle began in 2008, and solar observatories (on the ground and orbiting Earth) are closely monitoring the region.

The sunspot, a dark patch in the sun's photosphere, represents intense solar magnetism bursting from the sun's interior known as an active region. This particular active region, designated AR2192, has been rumbling with intense flare activity, recently exploding with 2 X-class flares, causing some short-lived high-frequency (HF) radio black outs around the globe.

Such blackouts are triggered by the intense extreme ultraviolet and X-ray radiation that solar flares can generate, causing ionization effects in the Earth's upper atmosphere - a region known as the ionosphere. HF radio can be strongly hindered by this activity, triggering blackouts that can effect air traffic and amateur radio operators.

Currently, the sunspot located at the base of AR2192 has swelled to over 80,000 miles across - Jupiter could almost fit inside the sunspot's mottled diameter.
Sun

Monster Earth-facing Sunspot - solar flare alert with possible solar storm brewing

solar flare

The sun on Oct. 23 as seen by NASA's Solar Dynamics Observatory. The dark sunspot cluster in AR2192 is obvious in the HMI Intensitygram (left), which represents the sun's photosphere -- known, colloquially, as the solar 'surface' -- whereas the EUV images to the right (at wavelengths 171A -- top -- and 304A) show emissions from the multimillion degree solar corona (where coronal loops shine bright) and chromosphere.
Just as the US prepares to watch the partial solar eclipse today, nearly 100 million miles away on the sun a possible solar storm is brewing. Amateur astronomers have been wowed by a vast sunspot that has rotated to face Earth, the largest since this solar cycle began in 2008, and solar observatories (on the ground and orbiting Earth) are closely monitoring the region.

The sunspot, a dark patch in the sun's photosphere, represents intense solar magnetism bursting from the sun's interior known as an active region. This particular active region, designated AR2192, has been rumbling with intense flare activity, recently exploding with 2 X-class flares, causing some short-lived high-frequency (HF) radio black outs around the globe.

Comment: Interesting that the Sun had been so quiet until around the time of Comet Siding Spring passing so close to Mars. Earth Changes and the Human-Cosmic Connection

Bulb

Electrical charge build-up drives molecular rearrangements

Schematic of the electrochemical cel
© Credit: Berkeley Lab
Schematic of the electrochemical cell – a silicon nitride (Si3N4) membrane separates the liquid from vacuum region of the x-ray source; a 20nm thin-film gold electrode is deposited on liquid side of the membrane. Detection of x-ray absorption is via fluorescence emission on the vacuum side or electron emission at the gold electrode.
When a solid material is immersed in a liquid, the liquid immediately next to its surface differs from that of the bulk liquid at the molecular level. This interfacial layer is critical to our understanding of a diverse set of phenomena from biology to materials science. When the solid surface is charged, just like an electrode in a working battery, it can drive further changes in the interfacial liquid. However, elucidating the molecular structure at the solid-liquid interface under these conditions has proven difficult.

Now, for the first time, researchers at the US Department of Energy's (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) have observed the molecular structure of liquid water at a gold surface under different charging conditions.

Miquel Salmeron, a senior scientist in Berkeley Lab's Materials Sciences Division (MSD) and professor in UC Berkeley's Materials Science and Engineering Department, explains this in the context of a battery. "At an electrode surface, the build-up of electrical charge, driven by a potential difference (or voltage), produces a strong electric field that drives molecular rearrangements in the electrolyte next to the electrode."

Berkeley Lab researchers have developed a method not only to look at the molecules next to the electrode surface, but to determine their arrangement changes depending on the voltage.
Satellite

NASA's Fermi satellite finds hints of starquakes in magnetar "storm"

NASA's Fermi Gamma-ray Space Telescope detected a rapid-fire "storm" of high-energy blasts from a highly magnetized neutron star, also called a magnetar, on Jan. 22, 2009. Now astronomers analyzing this data have discovered underlying signals related to seismic waves rippling throughout the magnetar.

neutron star
© NASA/S. Wiessinger
A rupture in the crust of a highly magnetized neutron star, shown here in an artist's rendering, can trigger high-energy eruptions. Fermi observations of these blasts include information on how the star's surface twists and vibrates, providing new insights into what lies beneath.
Such signals were first identified during the fadeout of rare giant flares produced by magnetars. Over the past 40 years, giant flares have been observed just three times -- in 1979, 1998 and 2004 -- and signals related to starquakes, which set the neutron stars ringing like a bell, were identified only in the two most recent events.

"Fermi's Gamma-ray Burst Monitor (GBM) has captured the same evidence from smaller and much more frequent eruptions called bursts, opening up the potential for a wealth of new data to help us understand how neutron stars are put together," said Anna Watts, an astrophysicist at the University of Amsterdam in the Netherlands and co-author of a new study about the burst storm. "It turns out that Fermi's GBM is the perfect tool for this work."

Neutron stars are the densest, most magnetic and fastest-spinning objects in the universe that scientists can observe directly. Each one is the crushed core of a massive star that ran out of fuel, collapsed under its own weight, and exploded as a supernova. A neutron star packs the equivalent mass of half-a-million Earths into a sphere about 12 miles across, roughly the length of Manhattan Island in New York City.
Telescope

Hinode satellite captures X-ray footage of solar eclipse

solar eclipse
© Center for Astrophysics
The moon passed between the Earth and the sun on Thursday, Oct. 23. While avid stargazers in North America looked up to watch the spectacle, the best vantage point was several hundred miles above the North Pole.

The Hinode spacecraft was in the right place at the right time to catch the solar eclipse. What's more, because of its vantage point, Hinode witnessed a "ring of fire" or annular eclipse.

An annular eclipse occurs when the moon passes directly in front of the sun but doesn't cover it completely because the moon appears too small. (The apparent size of the moon depends on its distance from Earth or, in this case, the spacecraft.) About one-third of all solar eclipses are annular.

"This is only the second annular eclipse Hinode has witnessed since it launched in 2006," says astrophysicist Patrick McCauley of the Harvard-Smithsonian Center for Astrophysics.
Airplane

Europe postpones next month's launch of first 'space plane'

ESA's space plane

A replica of the ESA's space plane IXV is on display during the presentation at the European Space Research and Technology Centre in Noordwijk, on September 9, 2014
Europe said Friday it was postponing the launch next month of its first-ever "space plane" to give scientists time to finetune the mission's flight plan.

Dubbed the IXV, for Intermediate eXperimental Vehicle, the plane had been scheduled for launch on November 18 by a Vega light rocket from Kourou, French Guiana.

"The European Space Agency (ESA), in conjunction with the French space agency CNES, has decided to carry out additional flight trajectory analyses," said Arianespace, which markets services by ESA's launchers.

"A new launch date will be announced as soon as possible," it said in a press release..
Magnify

Ebola's evolutionary roots are more ancient than previously thought

Ebola virus
© Credit: Frederick A. Murphy, via the Centers for Disease Control and Prevention
A colorized transmission electron micrograph (TEM) of the Ebola virus.
A new study is helping to rewrite Ebola's family history. The research shows that filoviruses - a family to which Ebola and its similarly lethal relative, Marburg, belong - are at least 16-23 million years old.

Filoviruses likely existed in the Miocene Epoch, and at that time, the evolutionary lines leading to Ebola and Marburg had already diverged, the study concludes.

The research was published in the journal PeerJ in September. It adds to scientists' developing knowledge about known filoviruses, which experts once believed came into being some 10,000 years ago, coinciding with the rise of agriculture. The new study pushes back the family's age to the time when great apes arose.

"Filoviruses are far more ancient than previously thought," says lead researcher Derek Taylor, PhD, a University at Buffalo professor of biological sciences. "These things have been interacting with mammals for a long time, several million years."

According to the PeerJ article, knowing more about Ebola and Marburg's comparative evolution could "affect design of vaccines and programs that identify emerging pathogens."

The research does not address the age of the modern-day Ebolavirus. Instead, it shows that Ebola and Marburg are each members of ancient evolutionary lines, and that these two viruses last shared a common ancestor sometime prior to 16-23 million years ago.
Blackbox

Do quantum effects emerge from many interacting [classical] worlds?

many worlds bizarre
© Elena Kulikova/Getty Images
Parallel universes - worlds where the dinosaur-killing asteroid never hit, or where Australia was colonised by the Portuguese - are a staple of science fiction. But are they real?

In a radical paper published this week in Physical Review X, we (Dr Michael Hall and I from Griffith University and Dr Dirk-André Deckert from the University of California) propose not only that parallel universes are real, but that they are not quite parallel - they can "collide".

In our theory, the interaction between nearby worlds is the source of all of the bizarre features of quantum mechanics that are revealed by experiment.
Top