
© unknown
Around 1.2 million years ago, a shift in global climate began that caused a change in the timing of the alternating warm and cold periods - called interglacials and glacials - that have persisted during the Pleistocene Ice Age. Prior to that time, ice age glacial periods lasted about 40,000 years but since ~700,000 years ago ice-age cycles have lasted for around 100,000 years. Orbital variations, called the Croll-Milankovitch cycles, do exert some forcing on the 100,000 year time scale, but it is relatively weak. Orbital cycles seem to many too feeble an explanation for the change in glacial-interglacial timing. Some scientists have attempted to attribute the timing shift to a drop in CO
2 but a new study confirms that carbon dioxide levels were not the cause of the climate shift.
The dominant period of Pleistocene glacial cycles changed during the mid-Pleistocene from 40,000 years to 100,000 years, for reasons unknown to science. A new
paper in the June 19, 2009, edition of
Science investigates whether that shift could be attributed to changes in atmospheric CO
2 levels. A group of researchers, led by Bärbel Hönisch, examined the factors that influenced the mid-Pleistocene transition (MPT) around 1250 to 700 thousand years ago. Here is the published abstract of the paper:
The dominant period of Pleistocene glacial cycles changed during the mid-Pleistocene from 40,000 years to 100,000 years, for as yet unknown reasons. Here we present a 2.1-million-year record of sea surface partial pressure of CO2 (PCO2), based on boron isotopes in planktic foraminifer shells, which suggests that the atmospheric partial pressure of CO2 (pCO2) was relatively stable before the mid-Pleistocene climate transition. Glacial PCO2 was ~31 microatmospheres higher before the transition (more than 1 million years ago), but interglacial PCO2 was similar to that of late Pleistocene interglacial cycles (<450,000 years ago). These estimates are consistent with a close linkage between atmospheric CO2 concentration and global climate, but the lack of a gradual decrease in interglacial PCO2 does not support the suggestion that a long-term drawdown of atmospheric CO2 was the main cause of the climate transition.