© Markus Rex, Alfred Wegener InstituteThese polar clouds, which are composed of frozen nitric acid and sulfuric acid, form when temperatures in the stratosphere fall below minus 108 F (minus 78 C). This is currently the case in vast sections of the Arctic. Chemical processes on the surface of the cloud particles transform the initially harmless chemicals from chlorofluorocarbons (CFCs) into aggressive ozone-depleting substances.
The loss of ozone over Antarctica has been well-known since the late 1970s, when a major report exposed the crisis happening on the continent. But this spring, an Arctic hole in the ozone nearly opened up over the northern United Kingdom, Scandinavia and Russia.
Unusually cold temperatures in the stratosphere, the second layer of Earth's atmosphere, caused the Arctic near-miss, according to a statement by Jonathan Shanklin, the head of meteorology and ozone monitoring for the British Antarctic Survey (BAS). Most years, Shanklin wrote, the Arctic stratosphere is too warm for ozone-depleting chemical reactions to take place. This year, however, temperatures dove enough to destroy
more than 40 percent of Arctic ozone.Without the protective sheeting of ozone, more ultraviolet (UV) radiation reaches the Earth's surface. That makes ozone levels important for public health, said Ross Salawitch, a professor of chemistry and biochemistry at the University of Maryland who studies atmospheric chemistry.