© NOCSTOBI sidescan sonar imagery draped over multibeam bathymetry provides a unique 3-D view of an active oceanic core complex at 13ยฐ19'N, the Mid-Atlantic Ridge.
Long-term variations in volcanism help explain the birth, evolution and death of striking geological features called oceanic core complexes on the ocean floor, says geologist Dr Bram Murton of the National Oceanography Centre, Southampton.
Oceanic core complexes are associated with faults along slow-spreading mid-ocean ridges. They are large elevated massifs with flat or gently curved upper surfaces and prominent corrugations called 'megamullions'. Uplifting during their formation causes exposure of lower crust and mantle rocks on the seafloor.
Murton was member of a scientific team that in 2007 sailed to the mid Atlantic Ridge aboard the royal research ship RRS
James Cook to study the Earth's crust below the ocean.
"We wanted to know why some faults develop into core complexes, whereas others don't," he says. "It had been suggested that core complexes form during periods of reduced magma supply from volcanism, but exactly how this would interact with the tectonic forces that deform the Earth's crust was unclear."