© Seth SteinThis map shows areas damaged by the Dec. 16, 1811, magnitude 7.2 earthquake. That earthquake was the first of three major temblors along the New Madrid fault in 1811 and 1812.
The New Madrid fault system does not behave as earthquake hazard models assume and may be in the process of shutting down, a new study shows. A team from Purdue and Northwestern universities analyzed the fault motion for eight years using global positioning system measurements and found that it is much less than expected given the 500- to 1,000-year repeat cycle for major earthquakes on that fault. The last large earthquakes in the New Madrid seismic zone were magnitude 7-7.5 events in 1811 and 1812.
Estimating an accurate earthquake threat for the area, which includes parts of Illinois, Indiana, Tennessee, Arkansas and Kentucky, is crucial for the communities potentially affected, said Eric Calais, the Purdue researcher who led the study.
"Our findings suggest the steady-state model of quasi-cyclical earthquakes that works well for faults at the boundaries of tectonic plates, such as the San Andreas fault, does not apply to the New Madrid fault," said Calais, who is a professor of earth and atmospheric sciences. "At plate boundaries, faults move at a rate that is consistent with the rate of earthquakes so that past events are a reliable guide to the future. In continents, this does not work. The past is not necessarily a key to the future, which makes estimating earthquake hazard particularly difficult."